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1. Introduction

The classification of supersymmetric supergravity solutions has many applications in string
theory. The first classification of a five-dimensional supergravity theory was undertaken
in I, in which all supersymmetric solutions of minimal, ungauged N = 2, N = 5 su-
pergravity were classified. It was constructed by examining the agebraic and differential
constraints imposed on spacetime forms obtained from bilinears in the Killing spinors.
Such classifications have been used to construct new black hole and black ring solutions.
Furthermore, more recent classifications using spinorial geometry techniques can also be



used to prove non-existence theorems in several supergravity theories, whereby solutions
preserving certain proportions of supersymmetry are excluded. Recently, a partial classi-
fication of solutions of gauged N = 2, D = 5 supergravity was constructed [fJ]. Solutions
with four linearly independent Killing spinors for which at least two generate a timelike
Killing vector were completely classified. In this paper we complete the classification of
half-supersymmetric solutions of gauged N = 2, D = 5 supergravity by considering the
case when all four Killing spinors generate null Killing vectors.

There are a number of interesting supersymmetric solutions in N = 2, D = 5 super-
gravity. Supersymmetric solutions can in principle preserve 1/4, 1/2; 3/4 or the maximal
proportion of supersymmetry. Examples of 1/4 supersymmetric solutions are for instance
the regular asymptotically AdSs black holes found in [{] and later generalized in [] and [f].
1/4-supersymmetric string solutions have also been constructed in [f] and [[f]. In [§] a clas-
sification of all 1/4-supersymmetric solutions of minimal gauged N = 2, D = 5 supergravity
was performed, this was later extended to a classification of 1/4-supersymmetric solutions
of a more general N = 2, D = 5 gauged supergravity, coupled to an arbitrary number of
abelian vector multiplets. Examples of 1/2-supersymmetric solutions are the domain wall
solutions in [[[(], as well as the solutions given in [T, [J] and [I3] which correspond to black
holes without regular horizons. The regular asymptotically AdSs black holes also undergo
supersymmetry enhancement in their near-horizon limit from 1/4 to 1/2 supersymmetry, as
do the black string solutions in [[f]. In [14], it was shown that all 3/4-supersymmetric solu-
tions must be locally AdSs, although globally there exist discrete qoutients of AdSs which
are 3/4-supersymmetric [[§]. The unique maximally supersymmetric solution is AdSs.

In order to investigate half-supersymmetric null solutions we will make use of the
spinorial geometry method. This method was first used to classify solutions of supergrav-
ity theories in ten and eleven dimensions [[[G, [[7]. The first step of such analysis is to write
the spinors of the theory as differential forms. The gauge symmetries of the supergravity
theories are then used to simplify the spinors as much as possible. By choosing an ap-
propriate basis, the Killing spinor equations (or their integrability conditions) are written
as a linear system. This linear system can be solved to express the fluxes of the theory
in terms of the geometry and to find the conditions on the geometry imposed by super-
symmetry. These methods have also been particularly useful in classifying solutions which
preserve very large amounts of supersymmetry; for example in [Ig] it has been shown that
all solutions preserving 29/32, 30/32 or 31/32 of the supersymmetry are in fact maximally
supersymmetric. We also remark that the spinorial geometry method has been used to
classify solutions of N =2, D = 4 supergravity; see for example [[L]].

The plan of this paper is as follows. In section 2, we review some of the properties
of five dimensional gauged supergravity coupled to abelian vector multiplets. In section
3, we show how spinors of the theory can be written as differential forms, and introduce
an adapted basis in the forms suitable for defining null Killing spinors. We then use the
Spin(4, 1) gauge freedom present in the theory to reduce one null Killing spinor into a
particularly simple canonical form, and the residual symmetry present to place the other
null spinor into one of two forms. In section 4, we summarize the constraints imposed by
solutions preserving 1/4 of the supersymmetry. In sections 5 and 6 we derive constraints



on the spacetime geometry, the gauge field strengths and the scalars obtained from the
Killing spinor equations. A number of different cases are examined in detail, corresponding
to the various different ways in which the Killing spinors can be simplified using gauge
transformations. In section 7, we present a self-contained summary of the metrics, scalars
and gauge field strengths for all of these half-supersymmetric solutions, together with an
interpretation of these solutions. Finally, in appendix A, we show that the integrability
conditions of the Killing spinor equations together with the Bianchi identity are sufficient
to ensure that the Einstein, gauge and scalar equations hold automatically. In appendix
B, we present a detailed derivation of the linear system obtained from the Killing spinor
equations for half-supersymmetric null solutions.

2. N = 2,D = 5 supergravity

We begin by briefly reviewing some aspects of N = 2, D = 5 gauged supergravity coupled
to n abelian vector multiplets. The bosonic action of this theory is [R(]

1
Tote / ((—51% +2x2V) %1 — Qs F! AxF + QrydX! AxdX”
—%CUKFI/\FJ/\AK> (2.1)

where I,.J, K take values 1,...,n and F'! = dA!. Cj;x are constants that are symmetric
on IJK; we will assume that Q7 is invertible, with inverse Q!/. The metric has signature

(+7 Ty Ty T _)
The X! are scalars which are constrained via

1
6CUKXIXJXK =1. (2.2)

We may regard the X! as being functions of n — 1 unconstrained scalars ¢®. It is

convenient to define
_1 Ik
X = 6C[JKX X (2.3)

so that the condition (R.9) becomes
X xt=1. (2.4)
In addition, the coupling Q;; depends on the scalars via
9 1 K
Qrs = §XIXJ - §CIJKX (2.5)

so in particular
J_ 3 J 3
QX" = §X1, Qr70, X" = _EaaXI- (2.6)

The scalar potential can be written as,

V=91V, (XIXJ - %Q”) , (2.7)



where V7 are constants.

For a bosonic background to be supersymmetric there must be a spinor e for which the
supersymmetry variations of the gravitino and the superpartners of the scalars vanish. We
shall investigate the properties of these spinors in greater detail in the next section. The
gravitino Killing spinor equation is

3

1 3i : 1
(au + 70" Tpo = %Au + %VIXIFM — SHT,+ EFMHP"PW)e =0,  (28)

where € is a Dirac spinor. The algebraic Killing spinor equations associated with the
variation of the scalar superpartners are

<4iX <XIVJXJ - ;Q”VJ> + 201 XT), — (FT — XIH’“’)FW>6 =0. (2.9)

where we define H = X;F!, A = V;A!. We shall refer to () as the dilatino Killing
spinor equation. We also require that the bosonic background should satisfy the Einstein,
gauge field and scalar field equations obtained from the action (R.1]) and analyse these in
appendix A.

3. Spinors in five dimensions

Following [R1-PJ], the space of Dirac spinors in five dimensions is the space of complexified
forms on R?, A = A*(R?) ® C. A generic spinor 7 can therefore be written as

= Al + ule’ + oe'? 3.1
n 1% s

where e!, e? are 1-forms on R?, and i = 1,2 for complex functions A, u* and . The action

of y-matrices on these forms is given by
i = (e’ A Fiei)
Vit = —€' A +igi,

for ¢ = 1,2. 7y is defined by
Y0 = 71234 5 (3.4)

and satisfies
12

Yl=1, ye?2=e?2 qef=—€ i=12. (3.5)
The charge conjugation operator C' is defined by
Cl=—e2 Ce?=1 Cé=—¢jel i=1,2 (3.6)

where ¢€;; = € is antisymmetric with e;o = 1. We also note the useful identity

(vm)* = =%CymnC . (3.7)



3.1 A Spin(4,1) invariant bilinear form on spinors

In order to analyse the 1/2 supersymmetric solutions it will be useful to construct a non-
degenerate bilinear form on the space of spinors. To do so, we first define a Hermitian
inner product on the space of spinors via

(291 + 2lel + 222 + 23! wl 1 +wle! + w?e? +we!?) = 2w, (3.8)

summing over o = 0, 1,2,3. However, (,) is not Spin(4, 1) gauge-invariant. To rectify this,
we define an inner product B given by

B(n,e) = (Cn*,¢), (3.9)
which satisfies the identities

B(7776) +B(6777) =0,
B(yun,€) — B(n,yue) = 0,
B(yunm,€) + B(n, yune) =0, (3.10)

for all spinors 7, €.

In particular, the last of the above constraints implies that B is Spin(4, 1) invariant.
Note that B is linear over C in both arguments. B is also non-degenerate: if B(e,n) =0
for all  then € = 0.

3.2 The null basis

To work in a basis adapted to describing solutions with Killing spinors which generate null
Killing vectors, define

1
' =—MmF ,
+ \/5(70 73)
1 . .
Iy = ﬁ(% — i) = V2ie*A,
1 . .
I'1 = ﬁ(% +iva) = V2ii2
FQ =7 - (311)

We then define a basis for the Dirac spinors A by

Yl =1+l YLl =e?Fe?. (3.12)

Note that wi is not the complex conjugate of wi.
Then it is straightforward to show that

Fyy§ =0

Iagd = V2yg
Ty = FV2il
Tyl = FV2iglL



Il =0

Tk =0
Doyl = +igl
Dot = Fipl | (3.13)

where o, 3 =1, 1.
A generic spinor can then be written as

0= ALY+ A%y (3.14)

where there is summation over @ = 1, 1. Note that the A% are in general complex and AL
is not the complex conjugate of \1.

1 + .2 1

The metric has vielbein e™,e™, e ,ei, e?, where e™, e? are real, and e!, e! are complex
conjugate, and )

ds®> = 2eTe™ — 2ete! — (e?)% . (3.15)

Now note that on writing the Dirac spinor n as = n' + in?, where n® are symplectic

Majorana spinors, we find

B(n',n*) = %B(%Cn*,n) = —%('Yon,m : (3.16)
Hence the nullity condition B(n',n?) = 0 can be rewritten in the null basis as
AL+ L AL AL L) + (AL =0, (3.17)
To proceed further, note that
P08V (1 4 el) = "W (1 4 ¢!, (3.18)
for x,y € R, and it is also convenient to define
Ty =r0+m3, T2=102+723, T3="010— V34, (3.19)
which satisfy
T =0, (3.20)
for o = 1,1, and also
Tyl = —2iy!t, Tyt = 2ipl | (3.21)
Tyt = 2ipl, Tyl = 2l (3.22)
Tyt = 291, Tyl = 2} (3.23)
Note that gauge transformations of the form e T¥72+2T5 for ¢, 2 € R map
A2 — A2
)\fr — )\fr —iz\ + (2 + zy))\i_
AL = AL fizal 4 iy — 2)AL . (3.24)



Clearly these leave 1+ e! invariant. We therefore adopt the following approach. Using
the Spin(4,1) gauge freedom, we can choose without loss of generality the first Killing
spinor to be

e=PL . (3.25)

The gauge transformations e*711¥72+2T5 Jeave € invariant. The second Killing spinor
of the form

n =AY+ AZYP2 (3.26)
where A% satisfy (B.I7) can then be simplified by using the gauge transformations

et +yTa+2T3

In particular, we note that we can make use of the gauge transformations to set either
AY =0, or A% = 0. To see this, let us first assume that AL £ 0 and AL # 0. Then we can

use (B.24) to set AL =0 by imposing
(z +iy)AL —izAl = AL . (3.27)

This fixes z,y in the )\1 transformation
- - - AL
AL = AL +izal - )\T_*(Ai* —qzAL*)
1 1 1 * * . 1 1 * *
= AT_*(AW_ — AL iDL ALALY) (3.28)

We can fix = here such that the term in brackets is real; then we find
AL =0
AL =l (3.29)
with 1 € R. To proceed further we use this result together with the nullity condition (B.17)

to find o
2uA AL =0 . (3.30)

This implies that 4 = 0. Alternatively, we have the case where A\ = 0, AL # 0. Here
we can use y, z in (B.24) to set AL = 0. This sets

AL = AL iaal

(i 1

Here x can be chosen to set the term in brackets to be real, so that once again we have
AL =0
A=l =0, (3.32)

where we set p = 0 using the nullity condition as before. The case A1 # 0, A =0 proceeds
analogously.



4. Quarter-supersymmetric null solutions

In appendix B we arrive at the general linear system following from the dilatino and
gravitino equations acting on a spinor € = )\izﬁr + )\3_1[)}1_ + ALyl + ALyl Restricting to
the case € = ¢}r we find

F{_=0, (4.1)
Fl = —z‘( — X" +2x (XIVJXJ - gQ”vJ>> +X'Hyq, (4.2)
o, x =o, (4.3)
Fiy =0, (4.4)
Fi; =0, (4.5)
Fly = ior X'+ X Hy, . (4.6)

Further constraints on the spin connection obtained from the gravitino equation acting
on € = wi are

Wi =Wh 2 =W 4] =W o =Wy = wi 47 =0, (4.7)
and
Wil = w242 =Wy =wz4+1 =wy 47 =0, (4.8)
as well as
Wiy tw_ 11 =0, (4.9)
—wiy_+ %ngg =0, (4.10)
—2iw_ 4o + iwy 19 + 3iXVI X' =0, (4.11)
Wy 4— +w_ 42 =0, (4.12)
We also find
H,=H,,=H, =0, (4.13)
H_; = —%w_ﬂ, (4.14)
H_9 =2xA_ — %w_ﬂ, (4.15)
Hyy = 2wy, _, (4.16)
Hy; = —%W—,H - %wl,ﬁv (4.17)
where the gauge potential has the following components constrained
xA1 = %wm— + %Wi,lh (4.18)
YAy = %wzﬂ, (4.19)
XAy = %‘*4,11 . (4.20)

To proceed to half-supersymmetric solutions, we incorporate these constraints into the
full linear system in appendix B and consider two cases in which either A = 0 or A% = 0.



5. Solutions with Xj‘_ =0

For this class of solutions, we set A3 = 0 for o = 1,1, in the components of the dilatino and
gravitino Killing spinor equations, with the resulting linear system presented in appendix
B. For a non-trivial solution to (B.69), and (B.7() to exist, we require

2( —xA_ — —w_] — =wa _ —xA_ — = 1— —wa
< X 3w_11 2w2, 2) ( X 301_711 2w2, 2>

1 1
+< R gw—,iz> ( —w2,-1F gw—,m) =0, (5.1)

which implies that

)
XA- = FW—11 (5.2)
W2 2 = 0, (5.3)
1
Wo,—1 = 3W_T2 - (5.4)

Using (B.61), and (B.66) we require

1

Slw—p2twi—2)(W 15 +wip) + (wi,-1)(wi 1) =0, (5.5)
which implies that

W_12 = —Wwi,-2,
wi,—1=10.
We can also use (B.57), and (B.5§) finding that
(- 2) (@ 2) + (1)@ 1) =0, (5.5)
so that
w_ 9 =0, (5.9)
wo_1=0. (5.10)
From (B.69), and (B.69)
(1,01, + 5 (@1,-2)(1 -2) =0, (5.11)
from which we see that
w1 =0, (5.12)
wi—g=w_19=wy_1=0. (5.13)

Using the dilatino equations ([B.49) and ([B.5()), we require that

8(0_XT —i(FLy — XTH_5)) (0_X7 +i(F’y — X'H_5))
+16(F!; — XTH_{)(F!, - X'H_1) = 0, (5.14)



so that, upon contracting with Q;;

Fl.=X"H 1 =0, (5.15)
Fl,=X'H , =0, (5.16)
o.x=o0. (5.17)

Within the case Ay = 0 there are three sub-cases to consider. Here either (AL #
0,AL £0), or AL =0,AL #0), or (A\L #0,AL = 0). Before analysing these three cases in
detail, we compute the stability group Stab(n;,n2) which leaves the spinors 1 = w}r and
ne = ALyl + )\1_1/11_ invariant. We also evaluate the Y-groups, which were introduced in
the context of an analysis of certain ten-dimensional supergravity solutions in [4]. For the
solutions under consideration here, the >-group is

Y (P) = Stab(P)/Stab(n1,n2) (5.18)

where P denotes the 2-dimensional span over C of 71,72, and Stab(P) is the subgroup of
Spin(4,1) x U(1) which preserves P (though not n; and 7y individually). In the gauged
supergravity theory, there is always a U(1) factor in X(P), due to the gauging.

It is straightforward to show that in all three cases,

Stab(n1,n2) = {1} (5.19)

and for the Y-groups:

(i) When AL # 0, )\i 75 0 the Y-group is Spin(2, 1) X U( ), generated by
)\1
{F+—7F+2 \/—)\1 F-i-l \/5()\1 ) F+I’F—2 \/—)\1 1 — \/_(Al ) 1}

(i) When AL =0, AL # 0 the X-group is Spin(3,1) x U(1), generated by
{F-l-—v F-i-lv F-i—i) F—17 F—Iv Fli}‘
(iii) When AL # 0, AL = 0, the S-group is Spin(2,1) x U(1) x U(1),
generated by {I'y _,T'15, "o, T'17}.
5.1 Solutions with A! #0 and AL #£0

Suppose first that AL # 0 and AL # 0. Then note that the U(1) x Spin(4,1) gauge
transformation of the type e9#e9724 for 1 € R, g € R which acts on spinors via

1 j 1 1
wi — e'9H IHT24 wi — wi
%lc - eig“eg““’“quc — e2igu¢flc ’ (5.20)

leaves € = wﬁr invariant, and transforms 7 as

n— ALl 4Lyl — ALYyl 4 (ALYl | (5.21)
Define _
, ALAL

g =ilog (L) (5.22)

— 10 —



Then we find that

ALY )\i / AL )\T 1-4p
AV :< ) | (5.23)
(ALY (AL))* (ALAL)
Hence, for u = %, and dropping the primes, we have
ALAL
=T o (5.24)
(ALAL)*
Now, observe that
0y9 = —2iw, 171, 0_g=—2iw_;1, (5.25)
so that, working in this gauge, we can take without loss of generality
w_i_’li = w_711 =0. (526)
Note in particular that in this gauge
AN =0 A =a, 0 =0\ =0. (5.27)

To proceed, we investigate several integrability conditions. In particular, requiring
that V. V_jAL = 0 imposes the constraint
1 1 1
(Wi 1 —w 1) (—wiitA — \/§W1,i2)\—) — (W1 —wo 1wt AL

1 2 7
+(wy,—2 — W—,+2)< — V2wy 1AL + < W11 T Wizt gw—,+2> AL) =0, (5.28)

and requiring that VHV_])\l_ = 0 imposes the constraint

2v/2 .
(T(W+,—1 —w_ 1) (Wi 1e +wog2) + V2(wi o — w—,+2)W2,12> AL

F2wp w1 —wy _qw_ )AL = 0. (5.29)
Next, the conditions V[iVB])\l_ = V[iVB})\i_ =0 for B=1,1,2 impose the constraints
O+wo 12 = O+wy 17 = 01w 4 = Oxwy 17 = Oxwy 19 = Oxw_ 12 =10 (5.30)
Now note that in the gauge for which Ay = A_ =0, we have

t t

T 1
XA = §W2,1162 + 3 - =

(2wi - +wigi)e’ 5 (2w14- = wiap)e' (5.31)
The integrability condition d(xA);_ = 0 then implies that

(2014 +wian)(mwy 1w 1) + (2014 Fwpr)(Cwg 1 F e s
wy17(~wy, 2 +w_ 12) = 0.(5.32)

Note also that (B.53) and ([B.54) can be rewritten as

1 _
E(w+,_2 +w_ o)A — (Wi 1w )AL =0, (5.33)

— 11 —



and

1 1 V2 1
—(w_,_,_i + w_7+1))\1_ + < - ﬁer,_g + 3—\/50.)_74_2 — ?wﬂg) )\1_ =0. (534)

Next note that the component of the Bianchi identity X ;dF i_2 = 0 implies that
Wop1wy 1 —w_ 4wy 1 =0, (5.35)

and substituting this into (5.29) we find

1

W1 —wo ) (W12 —w-42) w1 (Wi 2 —wo42) =0 (5.36)

Using these identities we obtain the constraints
1 2 2
5((w+,—2) —(w-42)7) two j1w_ 41 —wy qwi 1 =0, (5.37)

1 _
(wy,—2 +w_ 12) <(W+,—i —w_ DAL+ E(w+,—2 - w—,+2)>\1_> =0. (5.38)

We now find cases according as to whether (w; _o 4+ w_ 19) vanishes. First suppose
(wg,—2 +w—_ 42) = 0. Then (p.33) and (p.34) imply that

2w_ 40— w1 =NVIXT=0. (5.39)

Contracting (B:53) with V7 then implies that Q'/V;V; = 0. As Q! is positive definite
this is a contradiction.
We are then led to take (wi —2 +w_ 192) # 0. In this case we have the constraint

1 -
(w_,_’_i — w_d_j))\l_ + —(wgy—2— w_,+2))\1_ =0. (5.40)

V2

Further simplifications can be made by going back to our gauge transformations (f.20).
Requiring 01g = 0 implies that

V2w, ;1AL = —w; AL, (5.41)
when taken together with (f.3§). Similarly, g = 0 can be shown to require that
XA2 = W11 = 0. (5.42)

These conditions are sufficient to show that

d((;_)> ~0, (5.43)

and hence from (p.24) that

d<(;1_1‘)*> 0. (5.44)

— 12 —



Then, by making use of the U(1) x Spin(4, 1) gauge transformation of the type 12724
for constant 01,65 € R, we can set, without loss of generality

- _ A= g (5.45)

This gauge transformation multiplies w}r by a phase, however as this phase is constant,
it does not alter the constraints obtained in the analysis of the quarter-supersymmetric
solutions.

Using these results, we find the following constraints remain on the spatial derivatives
of the \’s;

I = 2w AL, (5.46)
;-1

NN = —w 1AL, 5.47

1 /L2 (5.47)

82)\1_ = —2\/5&)_,4_1)\1_, (5.48)

AL = —w; AL (5.49)

To proceed we note that )

)\1 2 /\1 2

V = <%>e+ , (5.50)

V2
W=e", (5.51)

are Killing vectors of the theory. We can find an additional Killing vector U, as

U=[V,IW]=aqaY, (5.52)
where Y is defined by ) )
Y =M (el +e!) — v2rLe?, (5.53)
and c; by )
c1 = w_,_,_g)\l_ — \/§w_,+1)\1_ . (5.54)

As Y can also be shown to be Killing we find that ¢; must be a constant.
We define a vector orthogonal to V', W, and Y as

Z=2M(e'+e')+v2rle?, (5.55)
and a vector orthogonal to V, W, Y and Z, as
X =i\ (e —el), (5.56)
where X can also be shown to be Killing. Furthermore we find
dV = (1Y + Z) NV, (5.57)

dw =

e e

(—e1Y + @ Z) AW, (5.58)

— 13 -



_0‘11,12\/§

dX = ZANX,
AL
dy — —2\/561V/\W+C—22/\Y,
f f
dZ =0,
A\l = —2w_ 17,
;=1
d\! = —w 157 .
ﬁwl,m

Here ¢y and f are given by
Ccy = \/iw_,_u)\l_ + w_,+2)\1_,
f = <(>\1_)2+(A1_)2>
- 7% ,
df = 22,
and c1,co, and f are related by

- cl)\i_ + e\l = 2w_ 41f,
Al el = V2w_ iof
(Wop1 —wi—1)f = —c1AL,
(Wo g2 —wi —2)f = V2o AL .

From (B-33), (F.34), and (p.40) we find that
o = xViXIAL,
which together with (p.66) implies that
8. f = xVixIh\L .
In addition, (p.62) and (5.67) can be combined in the following way
d(fAY) =N Z .

The forms V, W, X, Y, and Z, can be expressed in terms of coordinates as

V = fidv,

W = fadw,

X = fsdz,

Y = f(dy +p),
Z =dz.

The coordinate derivatives of the scalars (B.51) and (B.53) are

9,X; =0,
_0.X; = ?(XIVJXJ — VAL,
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(5.59)

5.60

5.61
5.62

~—~~ I~
~—  ~— ~— =

5.63



which implies that

dX| = —?(XIVJXJ —VALZ . (5.81)

The functions f1, f2, f3 and the form [ can be constrained, upon comparison

with (5.57)-(B.61), by

dlog fi = c1(dy + ) + dlog f + Gdv, (5.82)
dlog fo = —c1(dy + B) + dlog f + Hdw , (5.83)
dlog f3 = dlog (AL)?, (5.84)
—2\/56
B — fi;flfzdv Adw . (5.85)
We can rewrite these as

dlog —f}f = Gdv + Hdw (5.86)
dlog% = 2¢1(dy + B) + Gdv — Hdw , (5.87)

2
fa = cs(AL)? . (5.88)

for c3 a non-zero constant. Taking the exterior derivative of (p.87) and (b.86) we find
respectively

2¢1df = (0uH + 0,G)dv N dw , (5.89)
(—0wG+ OyH)dv ANdw = 0 . (5.90)
Upon comparing (5.89) with (5.85) we see that G and H have only a v and w dependance
OvH = 0,G = w , (5.91)

and satisfy
OwOyH = HO,H (5.92)
0vy0uG = GO,G . (5.93)

The field strength F! takes the form

FI = Flet ne? + F{zeT Ae? + Flhiel A e, (5.94)

with non-zero components, Fy,, F{2, F1[i7 given by (f.2) and ({.f). These can be expressed

in terms of the scalars using the scalar derivatives (f.59), together with (.69) and (f.39), as

XM\ esdx
Fl=—qg —=—") . 5.95
< V2 > (5.95)

The scalar derivatives (5.8]) can in turn be put into the form

d(fX;) =xViALZ . (5.96)

using (p.79). To proceed we need to consider two cases depending on whether ¢; vanishes
or not.
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5.1.1 Solutions with ¢; =0
In the case that ¢; = 0, (b.7) reduces to

d(fAL) =0, (5.97)

so that
AL =¢y, (5.98)

for non-zero constant c¢4. Here f is implicitly related to the scalars via the relation

9:(fX1) = xVr <\/_f - —)2 : (5.99)

We further find in this case that
dlog% = Gdv, (5.100)
dlog% = Hdw, (5.101)

and that the metric is given by

fifz (e, 1,
72 )d dw 5 dx 2\/§de Vi

- <\/§f— <674>2>é . (5.103)

Moreover, as G and % can be seen to be functions of v, and H and f—fQ are functions of w,
we find that, for ¢; = 0, the 2-manifold given by, @ds? = 2(%)dvdw, is flat.

dy® . (5.102)

ds?® = 2f(z)<

where

5.1.2 Solutions with ¢; # 0

On the other hand, if ¢; # 0 then (5.96), together with (5.73), can be explicitly integrated
up to

X = +xViAl 5.104
! Cl( f ( )
with K constant. The metric in our coordinates is now given, more generally, by
f 1f2> (esAL)? 1L, f 2
ds® = 2f(z dvdw — " dx? — dz* — dy + B)* . 5.105
fifo

In this case we can relate the function T to the Ricci scalar for the 2-manifold with

metric, ?ds? = 2f—}]§dvdw. The Ricci scalar is given by

2
Op= 2 ( _ > (80 H8,0,y 0y H — 8,0, Hy,0, H)
(2\/_0 ) 2\/761

= 4V2(c')?, (5.106)
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where we have made use of (5.99). This manifold is then found to be AdS;. We can also

make a gauge transformation § — G+ dlog f—~1, to eliminate the x and z dependance of f3.
2

The y dependance of fi, fo can further be expressed as

f1 = fiexp(c1y),
fo = faexp (—c1y),

so that (p.87) reduces to
6 =Hdw— Gdv,

where 3 is only a function of v and w.

5.2 Solutions with AL =0 and AL #0

The AL derivatives are
a+)\i_ = _W+,1i)\i—a
DAL = (—w_ 1 +wr )AL,
81)\1_ - _wl’li)\i_,
OAL = —wrAL,
AL = (w_p2 —wa7)AL,

and the other non-zero components of the spin connection are related by

I
Wo 2 = Wy 2= —wy g = xVIX",
1
WL_l = —5002’_2 .

We find for the scalars
dx!' =2y <Xf ViXxT — gQ” VJ> e?,

and gauge potential
i .
XA- = gw—,li W -
We can use a gauge transformation as in (), taking
vl — L
to set AL € R. As a result we find

Wyl = W_11 = W1 11 = W211 = 0,

and i )
d\L =w_ oA\te?.

The field strength F vanishes in this case. We find closed forms

_l’_

V=e",
W =hlte,
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(5.108)

(5.109)

(5.117)

(5.118)

(5.119)

(5.120)

(5.121)

(5.122)
(5.123)



where h = (AL)2. Then specify a coordinate basis
V=do,W=dw, X =dz,Y =dy,Z =dz .

In this basis
dh = 2xVi X hdz

so that upon comparison with (F.117), we find that
0.(hX1) = 2xVih .
The metric is given by
ds* = h(2dvdw — dz? — dy?) — d2* .

5.3 Solutions with AL #0 and AL =0

The AL derivatives vanish in this case
d\L =0.
The following components of the spin connection vanish

Wot1 =Wy -1 =wiip =0,

Wi-1=w2-1=w- 92=w_ 1 =w_12=wy 2 =0,

and we have

W— 42 = —Wt,-2,
1
OJL_l = —50027_2 =0.

We also find that the scalars are constant
dx'=o,

and for the gauge potential

1

XA = cwy et + cw_jie” +owgrel + cwigge’ + qwy e

3 3 3 3 3

We can integrate up the scalars, in the process defining a constant ¢ by

2
XViX'=c= SW-t2
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(5.124)
(5.125)
(5.126)

(5.127)

(5.128)

(5.129)

(5.130)

(5.131)

(5.132)
(5.133)

(5.134)
(5.135)

(5.136)

(5.137)

(5.138)



with X! = ¢!. The field strengths have non-vanishing component

FL = 3ix(- X'V, X7 +Q"vy), (5.139)
which are therefore also constants. We can contract this with xV7, to find
F=\ViF! = ike' ne!, (5.140)
with constant k = —3(02 — XQQUVIVJ)).
Taking the exterior derivative of the basis forms, one obtains
det = —3ce’* NeT, (5.141)
de™ = 3ce’ Ne™, (5.142)
de' = 3ixANe', (5.143)
de! = —3ixyAne!, (5.144)
de? = 3ce™ Ne™ . (5.145)
Coordinates can be introduced for e and e~ as
et = gidv, (5.146)
e = godw . (5.147)
Comparing (B.141) and (£.149) with (£.14d), (£.147), we find
dlog g1 = —3ce® + 3caqdv , (5.148)
dlog go = 3ce® — 3casdw, (5.149)
for some real functions aq, as. These can be rewritten as
dlog g192 = 3c(apdv — agdw) (5.150)
dlog % = —6ce® + 3c(ardv + azdw) . (5.151)
2
Then (5.151) defines e? implicitly to be
1
e’ =dz+ §(a1dv + apdw) , (5.152)
where we define the coordinate z, such that, dz = g—cldlog z—;. Next we can introduce
complex coordinates for e!, el as
el = sdt, (5.153)
el = adl, (5.154)
where s = re?, and d¢ = dx + idy. Then
dlog s + qdl = 3ixA, (5.155)
dlog s + qdl = —3ixA, (5.156)
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upon comparison with (5.143) and (5.144). Here ¢ is a complex function ¢ = q; + iga.
These expressions can in turn be rewritten as

dlog s§ = —qdl — gdl , (5.157)
dlog g = 6GiyA + qdl — qde . (5.158)

(b.158) implicitly defines A, up to a gauge transformation, as

1
XA = g(qux + q1dy) . (5.159)

With these coordinates, the metric takes the form
)2
ds® = 2g1 gadvdw — (dz + 5) — 2r%(dx? + dy?), (5.160)

where a = a1dv + asdw. We can proceed to investigate the curvature of the 3-manifold
with metric

2
3)ds? = 2¢ gadvdw — <dz + %) . (5.161)

To do this we take the exterior derivative of (5.15(0) and (.151)

doy Ndv —dag ANdw = 0, (5.162)
1
de? = 5 (dar Adv 4 das A dw) . (5.163)

These constraints, together with (5.14F) imply
avOQ = — Oy = 3691927 (5164)

and that oy = aq(v,w), s = ag(v,w). Substituting this back into the expression (pb.15()

for g1g2 , we see that

UG = 3c(ardv — asdw) . (5.165)
8va2

Next we note that the 2-manifold with metric, Pds? = 2g1godvdw is AdSy with
Ricci scalar 18¢%, and that « is related to the volume form for this manifold by da =
6¢ dvol(AdSs). It then follows that the 3-manifold with metric (5.161)) is AdSs (written as
a fibration over AdSs), with Ricci scalar

2
GR = % . (5.166)

We can, in a similar manner, compute the Ricci scalar for the 2-manifold with metric
2)ds? = 2s5d0dl = 2r2dldC.
Taking the exterior derivative of (5.157) and (f.158) provides

dgNdl+dgNndl =0, (5.167)
6ixdA = dg AN dl —dg A dl . (5.168)
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Given that F' = ydA we can compare this with (5.140), to find
Opq = 3kr? (5.169)
where r2 = s5. If we substitute this back into the expression (f.157) for s5 , we find that

d(0pq)
9rq

= —qdl — qdl . (5.170)
The Ricci scalar is given by (making use of (b.170))

—2 1)?

@R = " =) (9;99:0;0p9 — 0;0790:9;

(3_1ka[q)3 <3]€> ( 799097074 70740¢ N)

= 6k . (5.171)

The 2-manifold is then H?, R?, or S? according as to whether the constant k = —3(c?> —
x2Q'7V1V;) is negative, vanishing, or positive respectively.

6. Solutions with A* =0

For these solutions, we have Killing spinors n; = w}r and 19 = A}rl/}}r + Aiwi. Note that
if A}r = 0, then requiring that both 11,79 satisfy the Killing spinor equations for(_:es A}r to
be constant; such solutions are not half-supersymmetric. Hence, we must take )\i_ #£0. It
is straightforward to show that the stability subgroup is

Stab(n1,72) = R (6.1)
where R? is generated by {I't1,T',7,+2}. The ¥-group is then
¥(P) = Spin(1,1) x su(2) (6.2)

where Spin(1,1) is generated by I'y_ and su(2) is generated by {I'12,T'19, 17}
To proceed, we analyse the dilatino and gravitino equations; for the dilatino equations:

3 _
8iy <XIVJXJ — 5@”1{,) A =o0. (6.3)
For the gravitino equations, in the + direction

oA\ =0, (6.4)

AL +w, 1AL =0.
In the — direction

o_\L =0, (6.6)
(- = 3ixA )AL +w_ 1Al =0,
V2ixVixIal =o0.

— 21 —



In the 1 direction

I\ =0, (6.9)
AL +w A — 2w AL = 0. (6.10)

In the 1 direction
AL + xvV2ViXIAL =0, (6.11)
AL +2wr AL +oppal =0, (6.12)

In the 2 direction
RN =0, (6.13)
AL+ xViXIAL 4wy 10 = 0. (6.14)

These constraints imply that )\1 = 0 and that A}r is constant. Hence, as mentioned
previously, these solutions are in fact only 1/4 supersymmetric.

7. Summary of results

In this paper we examined half supersymmetric solutions of gauged N = 2, D = 5 super-
gravity coupled to an arbitrary number of abelian vector multiplets for which the Killing
vectors obtained as bilinears from the Killing spinors are all null. This analysis completes
the work initiated in [J], where half-supersymmetric solutions with at least one timelike
Killing vector were systematically classified. We have also shown that the integrability
constraints imposed by the Killing spinor equations, together with the Bianchi identity
for the 2-form field strengths, are sufficient to imply that the Einstein, gauge and scalar
equations hold automatically.
Four classes of solutions were obtained from this analysis:

(i) In the case where (AL # 0,Al # 0, ¢; # 0) the metric is given by

Lo,
TN,

where ds?(AdSs) has Ricci scalar R AdSy = 4\/56%. 0 is a one form on AdS, with

ds® = fds*(AdSy) — (AL )2da? — (dy + B)?, (7.1)

df = —2v/2¢; dvol(AdSs) . (7.2)

Here ¢; is a non-zero constant, and AL, AL € R. We also find that fo AL, AL and the
scalars X! are functions of z constrained by

X, = é <% + XV1A1_> , (7.3)
D)2+ LY

f= 7 : (7.4)

O-(fAL) = 1AL, (7.5)
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(iii)

for constant K;. It does not appear to be possible to de-couple these equations in
general. The field strengths F! satisfy

FI=d(XT\'dzx) . (7.6)

We remark that although it would appear that these solutions depend on a free
parameter c¢;, we can without loss of generality set ¢y = 1. This can be achieved by
making the re-scalings

M= (ALY, A= (ALY, f=af, K =c (K7
1 1 1
z = ClZ/, T = —33‘/, Yy = _y/7 ﬁ = _ﬁ/ (77)
C1 C1 C1

and defining the conformally re-scaled AdS, factor by
ds®(AdSh) = c1ds*(AdSs) (7.8)

so that Rgg, = 44/2, and df' = —2+/2 dvol(AdSh). On dropping the primes, it is
clear that one can set ¢; = 1 without loss of generality.

In the case that (AL # 0,AL #0,¢; = 0) we find for the metric

2 1 f
ds® = fds?(RY1) — <\/§ - C—4>d:r2 a2 gy, 7.9
st - (VO = Jao® - it Lot (@)
for non-zero constant c¢4. Here the function f and the scalars X! are constrained by
2\?
o.rxn) =i (ver - ). (7.10)
and the field strengths F are given by
XI

In the case that (AL =0, AL #0), we find that the field strengths vanish, F/ = 0. In
addition, the metric is given by

ds®> = h ds?*(R13) — d2?, (7.12)

and the scalars satisfy
0, (hX1) =2xVih . (7.13)

where h = (AL)2. This can be seen to be the domain wall solution found in [0],
where we identify h = (0, f )%, and x = g. Note that these solutions can be obtained
from the type (ii) solution described above, by taking the limit ¢4 — 0.
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(iv) In the case that (AL # 0, AL = 0) we find that the scalars X! are constant, and the
metric is
ds® = ds*(AdSs) — ds*(My) . (7.14)

where M5 is a 2-manifold with Ricci scalar
Ry, = =18 (X' X7 = Q™)1 vy (7.15)

so My is H?, R?, or S? according as to whether (XIXJ — QIJ)V]VJ is positive, zero
or negative. Note that in the minimal theory (XX’ — Q'/)V;V; = (1), so the
cases for which M, is R? or S? cannot arise in the minimal theory.

The AdS3 manifold has Ricci scalar

22V V XTI X

Rads, = 5 . (7.16)
For the field strengths we find
FL = —3x(=x1v; X7 + Q1Vy) dvol(My) . (7.17)

Note that these product space solutions have previously been found in the context of
black string solutions constructed in [f and [ff.
7.1 Interpretation of solutions

As we have already stated, the solutions (iii) correspond to domain wall solutions found
in [[[J], and the solutions (iv) correspond to near horizon black string solutions [ and [f].
We shall therefore concentrate on solutions (i) and (ii). We shall further assume that the
scalar manifold is symmetric, in which case one has the identity

gCJJKX[XJXKzl (7.18)
where
CIJK = 511,5JJ,5KK,C[/J/K/ . (719)

It is then possible to construct the metrics explicitly. We begin with the solutions of
type (i). As mentioned previously, we shall set ¢; = 1 without loss of generality.To proceed,
it is convenient to set

9
€= 5C”KVIVJVK (7.20)
and we assume that £ £ 0. Also define gy, & by

K; = 2V/2072%);
2\/5(1—2@

AL =
A x§

(7.21)
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for constant C' > 0. Note that Z is not constant. Also set

9 A
Gy = —C”szpJpK

a1 = iCIJKPIPJVK
g = 22 CHE 5V Ve . (7.22)
Then ([.3) implies that
f=2V2C2Hs3 (7.23)
where
H = &3 + 3G92% + 3614 + &y (7.24)
so that the scalars satisfy
H3X; —,01—1—%:% (7.25)
It is also convenient to introduce co-ordinates v, p and write the AdS, factor in the
metric as
ds?(AdS,y) = c —dvdp + — ¢ v? (7.26)

V2 2\f

Finally, on making the re-scalings
v =%, y=C%' p=C0 (7.27)

and using ([7.5), one can rewrite the metric as

1 4(x€)? 2 .
ds? = H3(—2dvdp + C*c2 p*dv?) — %H 5 P(di?)?

1
H3 1 o
— P~ Y(d#)? = C?*Hs (di' + B)? 7.28
1) (dz) ( ) (7.28)
where
3 = pdv 13—151—072@2 (7.29)
’ 4(x€)? '

Finally, define a radial co-ordinate r by
r=Hip. (7.30)

It is then straightforward to see that this metric corresponds to one of the three classes of
“static” local near horizon geometries, written in Gaussian null co-ordinates, as constructed
in 5] (on dropping the “on z,z! and 2?). The horizon is at r = 0. Note that one can set
C = 1 without loss of generality, by making appropriately chosen re-scalings, however we
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retain C' here for ease of comparison. Furthermore, one can also set & = 0 by making a
constant shift in the & co-ordinate, this then produces a modification to the function P.
It should be noted that a global analysis was carried out in [2§] which showed that the
spatial cross-sections of the horizon cannot be regular and compact.

The analysis of the type (ii) solutions is somewhat more straightforward. In particular,
define

9
€= §C’”KV1VJVK (7.31)

and again assume that £ # 0, also set

9
a0 = 5C pipspic

— 9 1JK
o = 250 p1psVi
9
Qg = @CIJK/)]VJVK . (732)

It is also convenient to define Z such that

- 2
%:X&/\/ﬁf—% (7.33)

SO
Vi
fXr=pr+ él’ (7.34)
and hence
1
f=(2%+3028 + 31 + ) 7 . (7.35)
Also define &', 2%, 79 by
x = 27132
y = 210!
=2 (7.36)

for constant C' > 0. Then the metric can be written as

ds® = 2fdvdp — f2(f3 — 73)(d2?)* — 4(61;)2 (f3 —73)"1(d2)* — C%f(dz")? . (7.37)
On defining the radial co-ordinate r by
r=f3p (7.38)

we recover the second type of “static” near horizon geometry constructed in [R5, in the
case for which I'g > 0. The static solutions with 'y = 0 found in that paper correspond
to the type (iii) domain wall solutions, with symmetric scalar manifold. Once more, a
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global analysis has been constructed, which shows that these solutions do not correspond
to compact near horizon geometries of regular black holes. We also remark that it is
straightforward to prove that the solutions of type (iv) correspond to the “static” solutions
with constant scalars found in [F].

To summarize, we have shown that when the scalar manifold is symmetric, and when
CHEVIV Vi # 0,! the set of static solutions found in [R§] for which the Killing vector
generated from the Killing spinor is null (excluding the trivial case of the maximally su-
persymmetric solution AdSs) is identical to the set of all half supersymmetric solutions for
which all of the Killing spinors generate null Killing vectors.

A. Integrability conditions

The gravitino and dilatino integrability conditions, respectively, can be put into the form

<Eaﬁrﬁ + éGﬁraﬁ —~ gGa>e =0, (A.1)
<S[ — g(Gla — X[XJGJQ)FO‘>6 =0, (A.2)

acting on a Dirac spinor € = )\ﬁ_wi_ + )\iwz_ + ALyt )\1_1/11_. Here
Eop = Rap+ QriF oy F7 5" — QriVa X VX’
1 1
+ga5< = QUi 5, T 46X <§Q” - XIXJ> vm) : (A.3)
1
Gra = VB(QIJFJOJQ) + 1_6OIJKEQﬁlﬁZBBmFJ5152FK5354v (A.4)
1 1
S; = VoV X[ — <60MN1 — 5X1Cuy ¢ >VQXM vexN
1 P 1 1 I\ M NB1 52
—5 XX Cnpr— ECMNI -6 X Xy XN+ EXICMNJX F*¥ 3 8, F
1
-3*ViuVy <§QMLQNPCLPI + X (@YY — 2XMXN)> ; (A.5)
with Gg = X!Grg. The 91, wi, YL 1 components of (A1) are respectively, for a = +

_ 1 _
V2E; AL+ V2E AL BN+ g(—G+A1+ — 2%GIAE +V2iGo L) = 0, (A.6)

_ _ 1 _ _
V2E, AL+ V2E 1AL — B\ — g(G+A1+ + 2iGE AL +V2iGoAL) = 0, (A7)
V2B AL — V2B AL 4B, — AL — Gy AL =0, (A.8)
V2E, (AL — V2E AL —iE, — AL — G AL = 0. (A9)

For o = —

V2E__ AL+ V2iE_ AL — B\ —G_A\L =0, (A.10)

!This condition holds for all solutions of the minimal theory, and also for all asymptotically AdSs
solutions.
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V2E__ AL + V2iE_ 1N} —iE_ o)L —G_AL =0, (A1)
_ 1 _
V2E_ 2L —V2iE_ AL + iE_2A1_+§(—G_A1_+2z’GlA1+—\/§¢G2A1+) =0, (A.12)

_ _ 1 _ _
\/§E_+A1+—\/§1'E_TA1_+z‘E_2A1_+§(—G_A1_+2¢G1A1++\/§1'G2A1+) =0. (A.13)

For o =1
V2E1 AL 4 V2iEp AL — B - GiAL =0, (A.14)
V2E; AL +V2iE AL +iEAL + %(—21(;_)\1_ — V26N —GiIAL) = 0, (A.15)
V2B AL — VE3ERAL +iEpAl —GiAL = 0, (A.16)
V2B AL — V2iEp AL — iEpal + %(22‘G+)&r —V2G AL —GiAL) = 0. (A17)

For a =1

V2E;_ AL + V2B AL —iBpp\L + %(—mc;_ﬂ_ + V260 —GiAL) = 0, (A.18)
V2E; AL + V2iEAL +iBpAL — Gl =0, (A.19)
V2B AL — V2B AL + iEpal + %(22‘G+>\£ + V260 — GiAL) =0, (A.20)
V2B AL —V2iEr AL —iBpal - Gpal = 0. (A21)

Finally for o = 2 we have
\/éEg_A1_+\/§¢E21A1—iE22A1+%(ﬁ¢G_A£—ﬁGIA1)—gczxi =0, (A.22)
\/§E2_>\i_+\/§z’E21>\3r—|—z'E22>\1—I—%(—\/ﬁiG_/\i_Jr\@Gi)&r)—;Gg/\i =0, (A.23)
\/§E2+/\3r—\/§iE21>\i_+z’E2g>\1_+é(\/§iG+/\fr—\/§Gl>\i_)—§G2/\1_ =0, (A.24)
\/§E2+)\1—\/§z’E21)\1_—z’Egg)\i_+%(—\/§iG+)\1+\/§G1)\1_)—§G2AT_ =0. (A.25)

Acting on the first Killing spinor € = 1/)_11_, we find the following constraints

E,.,.=FEs=FE 1=E ,=FE 1=F 5=0, (A.26)
and
Eiy=F1=E=E371=0, (A.27)
as well as
Eoy = Foy = Fy =0, (A.28)
together with
Gy =G_=G=G;=0. (A.29)

We can then substitute these back, finding the following non-vanishing constraints for
a =+ )
E, M =E, )\ =0, (A.30)
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for o = —

E__ X =E__\ =o, (A.31)
fora =1 )

Ei M =F A\ =0, (A.32)
for « = 2 )

By AL =F, 2 =0. (A.33)

We recall from section 4 that the residual gauge transformations preserving ¢ = ¢}r
allowed us to place our second Killing spinor n = )\}Fipi + /\izﬂr + ALyl 4+ ALyl into a
form where either A* =0, or Ay = 0, for &« = 1, 1. In section 6 solutions with A% = 0 were
found to be only % supersymmetric. If we then examine the case A = 0, we see that we
must have G = X'G; =0 and E = 0.

Evaluating (A.9) for a general Dirac spinor ¢, yields, for the wi_, wz_, T 1/11_ components

SiAL — g(\/iGI_)\l_ FV2iGRAL —iGAl) =0, (A.34)
Sl — g(\/iGI_AE FV2iGAL +iGpAl) =0, (A.35)
SIAL — g(\/?GH)&r —V2iGpAL 4+ iGpAl) =0, (A.36)
SIAL — g(\/iGHAi —V2iGAL —iGpAL) =0, (A.37)

where we have used G = X'G; = 0. Next, we restrict to the case € = wi_

Sr=0, (A.38)
G =0, (A.39)
Gii=0, (A.40)
Gr+ =0. (A.41)
Substituting back, we find that
Gr AL =Gl =0, (A.42)

so Gy =0and Sy = 0.

B. The linear system

In this appendix we present the decomposition of the Killing spinor equations acting on a
generic Killing spinor (written in an adapted null basis), and then present a special case.

B.1 Solutions with ¢ = A9 + A%y

The action of the dilatino equations on € is:

dix(xX'v;x7 — ng TVOAL +2v20_ XTAL +2v/2i9, XTAL — 2i9, X AL
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2FL — XTH, L+ 4i(FL — XTH )AL — 2v2i(FL, — XTH 5)AL
+2V2(Fly, — XTHi)N +2(FL — XTHi1)AL =0, (B.1)
3 _ _ _
4ix(XTV X7 = SQUYVAL +2v20 XTAL + 2v2i0 X TNL + 210, X AL
2RI — XTH AL +4i(FL — XTH )AL 4+ 2v2i(FL, — XTH )AL
—2V2(Ff, — XTHpp)NL — 2(Ff; - XTHi7)AL = 0, (B.2)
dix(xXTv;x7 — §Q” VAL 4+ 2v20, XTAL — 2v/2i9, XTAL + 209, X AL
9 +
—2(FL_ — XTH, )AL —4i(FL, — XTH )AL + 2v2i(FL, — XTH )AL
+2V2(Ffy — XTHi2) AL + 2(FL — X H1)AL =0, (B.3)
diy(XTV;x7 — gQ” VAL +2v20, XIAL — 2v/2i0; XIAL — 2i0, XTAL
—2(FL_ — XTH AL — 4i(FT; — XTH 1)N} — 2V2i(FL, — XTH )AL
—2V2(FL, — XTHp)AL — 2(FL — XTH;1)AL = 0. (B4)

The action of the gravitino equation on e in the + direction is given by (taking the
1/}#, wi, YL ! components in turn):

3ix 3 . 1 .

<8+ — TA+> )\}1_ - Z(\/§H+_/\1_ + \/§’LH+1/\}‘_ — ZH+2/\},’_)
1 _ _

+§(—w+,+_xl+ — 2wy AL+ V2iwy oAl — V2w 1pAL —wy 1AL

2 _ _
+%(H+_)\1_ + 2 H AL — V2iH o)L — V2H AL — HipAbL)

5% Iy\1
+ XX vxIl — 0, (B5
NG (B-5)

31 ;3 7 ) ) 7
<a+ - TXA+> AL - Z(\/§H+_A1_ +V2H g\ +iH o))
1 _ _ _
JF§(—W+,+—)‘3r —2iw, AL = V2iwy oA + V20, 1] oy a1A))

2 _ _ _
+%(H+_>\1_ + 2 H AL + V2iH o)L 4+ V2Hp AL + HipAL)

5% I\I
X yxTAl =0, (B6
NoAl (B.6)

3 3 .
<a+ - %m)x_ — S(=VEHAL 4 iH.o\)
1 _ _
+§(W+,+—)\1_ + 2iwy 1A} — V2iwg oA — V2w 1A —wyiAl) =0, (B.T)

<a R A+>A1_ = VEH AL iH L)

1 I . )
+§(w+,+—/\1— + 2wy AL+ V204 102) + V20 AL e 1AL =00 (BY)

— 30 —



In the — direction

(a_ ?”XA ) (\f 2iH_ AL —iH_yAl)
+%(—w_,+_Ai —2iw AL+ V2iw_ oA — V2w_ 1A —w_1Al) =0, (BY9)
(8_ 3ZXA > (\/_ZH AL —|—ZH_2/\1)
+;( —w_ 4 /\1 — 2iw_ —V2iw_ _2)\1 +V2w_ 12)\ +w_ 11/\1) =0, (B.10)

(a_ ?”XA ))\1_ - Z(—\/§H+_A1+ — V2iH_ A 4 iH_ )\

1 _ _
+§(w_,+_A1_ + 2iw_ 1L = V2iw_ oA — V2w oA —w_ 1AL

- i .
+§(_H+_Ai —2iH_ AL + V2iH oA\L — V2H oML — HipAY)

X Iy1
+—=V; X'\l =0, (B.11
\/5 1 + ( )
(a_ ?”XA ))\1_ - —( VEH N = V2iH (AL —iH_Al)
1 _ _ _
+§(w_,+_A1_ + 2iw_ AL + V2w oAl + V2w AL +w AL

2 _ _ _
+%(—H+_Ai —2iH_yA\L — V2iH AL + V2H ML + Hip\b)

tX I\ 1
+—=Vi; X'\, =0. (B.12
V2 I + ( )
In the 1 direction
3
<al ZXA1>)\1 (—\/§H_1)\1_ —iHpAL)
1 _ -
+§(—w17+_)\1 — 2iw1,_1)\1_ + \/iiwl _2)\1_ — \/5&)1 12)\1 —wy, 11)\1 ) =0, (B.13)
<81 3ZXA1>/\1 — —( \/_H_l/\l + \/_ZHll/\ —|—ZH12)\ )
1 - - -
+§(—W1 +—A}i- — Ziwl’_i)\l_ - \/§’L'CU1’_2>\1_ + \/§OJ1712A}’_ + wl’li)\}i_)

V2

- (CH N 20l AL+ V2iH AL — V2H AL — Hipl)

X Iy1
+2-VixXI\L =0, (B.14
\/5 I + ( )
<al X4 )Al_ ~ HVBH AL +iHpAL)
1 _ _
+§(w17+_)\1_ + 2iw1,+1)\i - \/Eiwld_g)\},_ - \/5&)1712)\1_ - wl’ﬁ)\l_) = 0, (B15)

(81 3;XA1>/\1_ - z(—\/iHHAi — V2iH ;AL 4+ iH2AL)
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1 1 . . 1 1
+§(W1 AL+ 2wy 1AL+ V2iwr 42Ny + \/§W1,12/\1— +wy 1iAL)

*m Y (Hy AL 4+ 2iH N — V2iH oA — V2H AL — Hypab)

X Iy1
- Vi X'\ =0. B.16
V2 (B-16)

In the 1 direction
<81 - &TX&)& - Z(—\/iH_i)\l_ — V2iH AL —iHppL)
1 = -
+§(_WI +—/\}i- - Ziwl_l)\l_ + \/iiwi,_g)\l_ - \/5011,12/\# — wi,li)‘}i-)

V2

- (CH- AL — 2iH_ AL — V2iH oAl + V2Hp AL + HipAL)

+%V1XIA1 —0, (B.I7)

3 .3 : :
<al - %AQAL = (-V2H_ AL +iHpA)
1 _ _ _
+§(—w17+_)\1 — QiWi,—I)\l— — \/iiwi,_z)\l_ + \/5&)112)\}’_ + wi,li)‘}l—) =0, (B.18)
<ai S A1>)\1 (—\/§H+1)\3r +V2iH AL +iHppAL)

1 , ] , ]
+§(WI +_A1_ + 2'Lw17+1)\}i_ — \/§ZUJ17+2)\}F — \/5001712A1_ — Wi’li)\l_)

1 . . i i
jth(H+ AL+ 2iH gAY + V2iH oAl + V2Hp AL + HipAL)

X Iy
——=Vi XX =0, (B.19
oAl (B.19)
3ix ) 1 . 1
1 - - -
+§(w17+_)\1_ + 2iw17+1)\i + \/Eiwi,-ﬂ)‘}l— + \/iwijz)\l_ + wi’ﬁ)\l_) =0. (B.20)
Finally, in the 2 direction
3ix 1 1 : 1
8 — —A2 /\ (—\/EH_Q/\_ — \/§ZH12/\+)
1 - -
—1—5(—002 +_/\1 —2’L'OJ2,_1>\1_+\/52.0027_2A1__\/§W2712>\}|_—w2711A}i_)
4( Hi AL —2iH AL+ V2iH oA\L — V2H AL — HipAb)

—%VIXIAL —0, (B.21)
3ix i i 1 1
Oy — =~ Az )% (—\/EH_QA_ — V2iHp L)

1 I . 1
—1—5 (—wa+- AL — 2@w27_1)\1_ —V/2iwg, oA + \/§W2,12)‘}+ —|—w2711/\i)
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— g (FH L = 2 AL = VEH AL + VEHRAL + HypAL)
+3ViXIAL =0, (B22)

(82 — ?’ZTXA2>)\1_ - g(—\/EHHAL +V2iH )
1 _ _
+§(w2,+_A1_ + 2iws, 1AL — V2iws oA} — V2wi 19AL —wy 1AL)

—i(H+_A1_ F2H N —V2iH AL —V2H AL — HipAL) + %leul_ —0,

(B.23)
(a . %@)Ai - g(—x/iHHAi +V2iH\)
+%(w2,+_)\1_ + 2iw27+1)\i + \/§iw2,+2>\3 + \/§w2j2>\1— + w2,1i)‘1—)
+£(H+_/\T_+2iH+1/\3r+\/§iH+2>\i+\/§H12/\1_+H11>\1—)—§V1X1)‘1— =0.
(B.24)

B.2 Constraints on half-supersymmetric solutions

Substituting the constraints obtained in section 4, for quarter-supersymmetric solutions
with € = w}r, back into the dilatino equations we find

220 XA +4i(FL, — XTH )AL —2v2i(FL, — XTH_ ;)\ =0,  (B.25)
8ix (XIVJXJ - gQ”VJ> AL+ 2v20_xTAL

+4i(FL — XTH_ DAL + 2V2i(FL, - XTH )AL =0,  (B.26)

V20, XTAL —4id XA =0,  (B.27)

4vV2i0; XTAL + 4ido XTAL — 8iy (Xf VX7 — gQ” VJ> AL =0. (B29)

Substituting the constraints back into the gravitino equations yields, in the + direction:

V2i V2i

1

AL —dw, AL+ Tomwr,-oAL + 2%12{ + oAl =0, (B.29)

i i 2 i

OpAp +wi Ay —iwy TA- — w4 2AT

2i NG :
+%w2 AL+ Tzw_7+2)\1_ - Tzwl oAl =0,  (B.30)
AL =0, (B.31)
Oy +wpqp)AL =0.  (B.32)

In the — direction:
— 2

0Ny —dw_ AL+ Qw_7_2/\1_ =0, (B.33)

2
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V2i

(0- = 3ixA )AL —iw_ AL — T2 ol =0, (B.34)

- 2
2v/2 -2
(0_ — 2ixA AL — wa_ 1AL — gw_ﬂAl_ =0, (B.35)
2V2 2 V2i T
((9_ — ZXA ))\1 + Tw_ 12)\1 + 3w_ 11)\1 + T(Qw 42— wLD))\}‘_ = O . (B36)
In the 1 direction:
61>\1 + Qw_ 12)\1 + Q w1, _2/\ — z'wL_l)\i_ =0, (B.37)
AL+ wp 1AL =201 AL —dwy gAL +xA_NL
_ y 2 _
—I—%w_ 1Al — %w_,ﬂAl_ - %wl,_gxl_ =0, (B.38)
(O —2w1 4 )AL =0, (B.39)
81)\1_ + wl,li)\I— + \/5&)1712)\1_ = 0 . (B40)
In the 1 direction:
V2 T 2i
AL + ?(2w_7+2 —wy 12)A} — TW—,D)\l—
le QA —’Lwl _1)\ + 3w_ 11)\ —XA Al = 0, (B41)
_ _ _ 2 _ 2 _
AL 42wy | AL H+wp gl —dwy _pAL — QMHA{ - Qw_,m»_ =0, (B.42)
2v2

Ol + 2wp o AL = S5 (W g Fwig)Al = 0, (B.43)

(01 +wi )AL = 0. (B.44)

In the 2 direction:

82>‘}i-_\/§>‘1—< YA_ —|—3w_ 11)—2&)2 _1/\1 —I—QOJQ 2)\ —|—;w_ 12)\1_ =0, (B.45)

1 ) 1
g&)liQ + WQ’11> )\}l_ - ZWQ’_i)\l_ + gw_,IQ)\l_

1 2
82)\}1_ + <§w_7+2 —

2 3

82)\1_ — \/5@2’12)\1_ = 0, (B.47)

- 2 1
AL + V2wy 1o AL — (gw—7+2 T 3Wiiz T W2,1I))\1 0. (B.48)

—QWQ 2)\ \/_< XA + w_ 11))\1_ - 0, (B46)

B.3 Solutions with /\S“r =0

In the case where A = 0 we can reduce the dilatino equations to:

220 XA 4 4i(F!, — XTH_ )AL — 2v2i(F!, — XTH_5)A
2v20_ XAl + 4Z(F_I — XTH DX +2v2i(F1, — XTH )AL =0,  (B.50)
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4V2i01 XIAL — 40, XA\ =0,
4v2i0; XIAL + 4i0, XA — iy (Xf Vix) — gQ” VJ> AL =0.

The gravitino equations reduce to, in the + direction:

V2i i . 2i
ZW+7_1A — Tw% 2)\1_ - 5W2712A1_ - Tw_7+2)\1_ = 0,
. 24 T 1 2 T 24 T
iw, AL+ £w+,_2A1_ — swy AL — iw_ﬂﬂ_ + w AL =0,
2 2 6 3
8+)\1_ == 0,
(O +wig)A =0
In the — direction:
5
zw_7_1/\1_ — Tzw_7_2)\l_ =0,
5
iw_ AL+ %w_ﬂ)\l_ =0,
2v/2 2
(0_ — 2ixA )AL — %_w_,lg)\l_ —3¥- AL =0,
T 242 2 7
(- —ixA_)AL + wa_ 1AL + SW-aIAL =0
In the 1 direction:
27 24 T
TZW_JQ/\l_ + QWL_Q/\l_ — z'wL_l/\l_ =0,
iwl,_i)\l_ — XA_)\l — Qw 12 )\T_ + %w_,ﬁ)\l + le _2)\1_ =0,

(0 — 2w1,+_)A1_ —0,
81/\1_ + lei)\i_ + \/§w1712/\1_ =0.

In the 1 direction:

%w_iz)\l_ fzw1 oAb + iwy, _1/\ — gw_ 11)\1 +xA_AL =0,
iwr AL + Q wi AL + QW_MAT_ =0,
HAL + 2WI,+—)\1— - 23£(W—,+2 + wi,m))\i— =0,
(01 +w1711))\1_ =0.
In the 2 direction:
orN ( —xA_ — gw_711> Fiwy AL — %wz AL - %w—,12A£ =0,
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(B.51)
(B.52)

(B.53)

(B.54)

(B.55)
(B.56)

(B.57)
(B.58)
(B.59)

(B.60)

(B.61)

(B.62)

(B.63)
(B.64)

(B.65)
(B.66)

(B.67)
(B.683)

(B.69)



. 5 ) . )
iw27_1)\1_ + %w_jz)\l_ - Tzwg_g)\l_ - \/5( —xA_ + %w_Jl))\l_ =0, (B.70)
82)\1_ - \/5&)2,12)\1_ = 0, (B.71)
_ 2 1 _
DAL + V2w, 1AL — <§UJ—,+2 Wil - W2,1i>)\1— =0. (B.72)
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